УДК 631.4

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ МЕЛИОРАТИВНЫХ СВОЙСТВ ТОНКОДИСПЕРСНЫХ ФРАКЦИЙ ДОЛОМИТОВОЙ МУКИ И ДОМЕННОГО ШЛАКА ЧЕРЕПОВЕЦКОГО МЕТАЛЛУРГИЧЕСКОГО КОМБИНАТА

А. В. Литвинович¹, З. П. Небольсина², А. В. Лаврищев¹, О. Ю. Павлова¹, А. О. Ковлева ¹, И. А. Кузёмкин¹

¹ ГНУ Агрофизический научно-исследовательский институт Россельхозакадемии Гражданский проспект, 14, Санкт-Петербург, 195220 ² Северо-Западный НИИ сельского хозяйства Россельхозакадемии ул. Институтская, 1, п. Белогорка, Гатчинский р-н, Ленинградская обл., 188231 E-mail: avlavr@rambler.ru

Поступила в редакцию 29 апреля 2013 г., принята к печати 28 мая 2013 г.

В 4-летнем вегетационном опыте проведено сравнительное изучение удобрительной ценности и мелиоративных свойств доломитовой муки и доменного шлака, измельчённых до одинакового размера. Установлено, что использование доломитовой муки в дозах, эквивалентных по нейтрализующей способности доменному шлаку, способствовало большему сдвигу величины р H_{KCl} , более полному осаждению фитотоксичных катионов алюминия, марганца и железа и большему накоплению в почве поглощённых оснований ($Ca^{2+} + Mg^{2+}$). Тем не менее, значимых различий по урожайности рапса, вики и соломы пшеницы между вариантами, удобренными средними дозами мелиорантов, выявлено не было. По влиянию на продуктивность зерна пшеницы доменный шлак уступал доломитовой муке.

Ключевые слова: почвы, растения, доломитовая мука, доменный шлак.

ВВЕДЕНИЕ

Кислые почвы на территории Российской Федерации занимают 73 млн. га сельскохозяйственных угодий (Деградация..., 2002). В естественном состоянии они обладают целым рядом неблагоприятных свойств, лимитирующих получение на них высоких и устойчивых урожаев. На сельскохозяйственных угодьях с повышенной кислотностью в России ежегодно недобирают 16–18 млн. тонн продукции растениеводства в пересчёте на зерно (Шильников и др., 2010).

Средством коренного улучшения кислых почв является известкование. В Северо-Западном регионе России перспективными для известкования являются три группы мелиорантов: (1) известковые удобрения, получаемые в результате переработки карбонатных пород, — известняковая и доломитовая мука; (2) рыхлые (лёгкие) карбонатные породы — мел, туф, гажа; (3) известьсодержащие отходы промышленности — цементная пыль, сланцевая зола, шлаки и др. (Небольсин, Небольсина, 2005).

Перечисленные известковые материалы обладают разным химическим составом, плотностью, пористостью, скоростью растворения, поэтому эффективность и продол-

жительность их воздействия на почву и влияние на растения должны существенно различаться.

По степени растворимости все формы известковых удобрений можно расположить в следующий ряд по убыванию: оксид кальция > карбонат кальция > силикат кальция.

Наибольшей химической активностью (скоростью нейтрализации почвенной кислотности) обладают мелкоразмолотые частицы мелиорантов (Литвинович, Небольсина, 2012). Регулируя тонину помола мелиорантов, можно гипотетически снивелировать их различия в воздействии на почвы и растения, вызванные неоднородностью их химического состава.

Цель исследования – провести сравнительное изучение мелиоративных свойств тонкодисперсных фракций доломитовой муки месторождения Елизаветино Ленинградской области и доменного шлака Череповецкого металлургического комбината. В составе доломитовой муки кальций и магний присутствуют в форме карбонатов, в составе доменного шлака – в форме силикатов, различной активности.

ОБЪЕКТЫ И МЕТОДЫ

Изучение проводилось в 4-летнем вегетационном опыте с возрастающими дозами мелиорантов. Схема опыта включала 9 вариантов (табл. 1). Повторность опыта 4-кратная. Сосуды в опыте вмещали 5 кг почвы, использовалась сильнокислая легкосуглинистая дерново-подзолистая почва со следующими физико-химическими показателями: $pH_{KCl}-4.1$; Hr-4.75 ммоль(экв.) $100~r^{-1}$ почвы; гумус -1.75%; содержание фракций < 0.01 мм -24.1%.

В опыте последовательно выращивались пшеница (сорт «Ленинградская-97»), рапс (сорт «Оредеж-4») и вика (сорт «Вера»). Пшеница доводилась до полной спелости, рапс и вика убирались в фазу цветения.

Кислотно-основные свойства, содержание Al, Mn и Fe в почве определялись после извлечения с помощью раствора 1н KCl. Использование 1н KCl даёт возможность выяснить все взаимосвязи между основными элементами, определяющими кислотнощелочное состояние почвы. Кроме того, вытяжкой 1н KCl извлекаются 2-х валентные

(легкоподвижные) соединения Mn и Fe, оказывающие наибольшее токсическое воздействие на растения (Небольсин, Небольсина, 2005).

В качестве мелиорантов применялись доломитовая мука и доменный шлак с размером частиц менее 0.25 мм. Нейтрализующая способность доломитовой муки составляла 93%, доменного шлака — 80%. Дозы мелиорантов в опыте выравнивались по их нейтрализующей способности. Полученные результаты измерений обрабатывались статистически.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Данные о химическом составе доменного шлака Череповецкого металлургического комбината представлены в табл. 2. Они показывают, что содержание тяжёлых металлов в составе доменного шлака не превышает ПДК, установленной гигиеническими нормативами для почв. Согласно ГН 2.1.7.2041-06 и ГН 2.1.7.2042-06, применение шлака не должно привести к загрязнению почв ТМ.

Таблица 1. **Изменение кислотно-основных свойств почвы под действием возрастающих** доз доломитовой муки и доменного шлака

	pH _{KCl}			Al^{3+}			$Ca^{2+} + Mg^{2+}$					
	p11 _{KCl}				ммоль(экв.)/100 г							
Вариант опыта	Пшеница	Рапс	Рапс	Вика	Пшеница	Рапс	Рапс	Вика	Пшеница	Рапс	Рапс	Вика
1. Фон (NPK)	4.14	4.38	4.39	4.40	1.39	0.98	0.97	0.74	1.45	2.01	2.58	2.10
2. Фон + ДМ по 0.375 Нг	4.52	4.60	4.79	4.49	0.55	0.38	0.88	0.67	3.71	4.24	4.29	3.48
3. Фон + ДМ по 0.75 Нг	4.97	5.04	5.98	4.81	0.12	0.14	0.55	0.50	5.36	5.39	5.99	5.86
4. Фон + ДМ по 1 Нг	5.38	5.42	6.58	5.17	0.04	0.02	0.14	0.27	6.63	5.76	6.56	6.27
5. Фон + ДШ по 0.1 Нг	4.30	4.44	4.38	4.58	1.18	0.64	0.76	0.92	2.06	2.46	2.63	2.67
6. Фон + ДШ по 0.25 Нг	4.39	4.62	4.39	4.49	0.91	0.45	0.49	1.03	2.54	2.24	3.53	3.44
7. Фон + ДШ по 0.375 Нг	4.42	4.69	4.40	4.47	0.81	0.53	0.57	1.01	3.05	3.56	3.44	3.79
8. Фон + ДШ по 0.75 Нг	4.69	4.78	4.44	4.76	0.51	0.25	0.32	0.62	3.84	4.31	5.40	5.31
9. Фон + ДШ по 1 Нг	4.83	5.23	4.56	5.05	0.28	0.09	0.31	0.33	4.71	5.04	6.15	5.29
HCP ₀₅	_	-	-	_	0.076	0.103	0.297	0.015	0.545	0.481	0.555	0.445

ДМ – доломитовая мука, ДШ – доменный шлак, НСР – наименьшая существенная разница.

Таблица 2. Содержание тяжелых металлов в доменном шлаке Череповенкого металлургического комбината мг кг⁻¹

As As Db Cu 7n Mn Cd Ni								
	As	Ag	Pb	Cu	Zn	Mn	Cd	Ni
	0.14	0.018	27.2	9.0	4.1	1105	< 0.01	11.6

Результаты изучения динамики величины рН в почве сосудов за 4 года эксперимента представлены в табл. 2. Материалы свидетельствуют, что применение мелиорантов привело к снижению величины рН почв, измеряемой в растворе 1н KCl, во всех вариантах с известкованием. В почвах, удобренных доломитовой мукой, в первые три года наблюдений отмечен рост величины рН вне зависимости от дозы её внесения. На четвёртый год после начала эксперимента величина рН снижалась во всех вариантах опыта. Рост величины рН в вариантах с доменным шлаком отмечен до второго года эксперимента. С третьего года эксперимента величина рН снижалась. Из-за лучшей растворимости доломитовая мука способствовала большему снижению почвенной кислотности, чем доменный шлак.

Использование мелиорантов существенно повлияло на величину суммы поглощённых оснований (табл. 1): чем выше была доза применения, тем больше оснований накапливалось в исследуемой почве.

Максимальное содержание суммы поглощённых оснований в почве установлено в варианте с применением полной по гидролитической кислотности (Hr) дозы доломитовой муки. В почвах, мелиорируемых доломитовой мукой, сумма Ca^{2+} и Mg^{2+} возраста-

ла до третьего года эксперимента, снижаясь на 4-й год наблюдений. Использование доломитовой муки приводило к более заметному увеличению концентрации обменного кальция и магния в почве в год внесения, чем использование доменного шлака, что связано с лучшей растворимостью карбонатов Са и Мg по сравнению с силикатами. В аналогичных вариантах с доменным шлаком увеличение было постепенным. Исключение составляют варианты с применением шлака в дозах 0.1 и 0.375Hг, где содержание суммы обменных оснований возрастало на протяжении всех 4 лет наблюдений.

Согласно современным представлениям, в сильно-кислых дерново-подзолистых почвах Северо-Западного региона алюминию принадлежит ведущая роль в формировании обменной кислотности (85–98%) (Небольсин, Небольсина, 2005). В структуре обменной кислотности выбранной для исследования почвы на долю подвижного алюминия приходится 95–96%. По своему воздействию на растения алюминий – типичный корневой яд, приводящий к ослизнению корней растений и замедляющий их рост. Различия в формировании корневой системы пшеницы в вариантах опыта без известкования и с известкованием представлены на рисунке.

Рис. Внешний вид корневой системы пшеницы при известковании доломитовой мукой

Отрицательное действие повышенного содержания Al устраняется в малогумусовых почвах при значении р $H_{\rm KCl}$ 4.9–5.2 ед.; в почвах с высоким содержанием органического вещества — при р $H_{\rm KCl}$ 4.5–4.7 ед. (Небольсин, Небольсина, 2010).

Данные об изменении содержания подвижного Al в сосудах опыта под действием возрастающих доз мелиорантов представлены в табл. 2.

Исследования показали, что чем выше доза применения мелиорантов, тем меньше подвижного Al обнаруживалось в почве. Использование доломитовой муки было более эффективно.

Полного осаждения Al в результате известкования достичь не удалось. Это согласуется с имеющимися в литературе сведениями, что осаждение Al достигается при $pH_{KCl} \ge 5.5$ ед. (Орлов, 1985).

Марганец - безусловно необходимый растениям элемент. Важная физиологическая роль его связана с участием в ферментативных реакциях растений (Небольсин, Небольсина, 2010). Однако на кислых дерновоподзолистых почвах Северо-Западного региона чаще приходится сталкиваться с избытком, чем с недостатком марганца. По данным В. К. Пестрякова (1977), валовое содержание Mn в пахотных горизонтах может колебаться от 0.03 до 0.5%. Содержание легкоподвижного Mn, данным ПО А. Н. Небольсина И 3. П. Небольсиной колеблется (2005),0.008 ОТ до 0.4 ммоль(экв.) $100 \, \Gamma^{-1}$ почвы.

В длительных опытах установлен оптимальный уровень содержания Мп в почвах для различных культур. Для яровой пшеницы в интервале рН от 4.7 до 6.9 он составляет 0.022 ммоль (экв) $100~{\rm r}^{-1}$ почвы. В отличие от Al, максимальное снижение подвижности Мп достигается при уровнях реакции рН $_{\rm KCl}$ 6.5–7.2 ед. (Небольсин, Небольсина, 2005).

Данные о динамике изменения содержания легкорастворимого Мп под действием возрастающих доз мелиорантов приведены в табл. 3. Они показывают, что с увеличением дозы мелиорантов концентрация Мп в почве снижается. Оптимальное содержание Мп в почве установлено в год известкования в варианте опыта с использованием доломитовой муки по полной дозе Нг, во всех остальных вариантах концентрация Мп была выше.

На второй, третий и четвёртый годы после известкования концентрация Мп во всех вариантах опыта возрастала. Сравнительный анализ данных свидетельствует, что при осаждении Мп доломитовая мука была более эффективна, чем шлак. Следует, однако, иметь в виду, что при использовании доменного шлака происходит дополнительное обогащение почвы марганцем, присутствующем в составе шлака.

Физиологическая роль железа в растениях связана с его участием в окислении углеводов, в восстановлении сульфатов и нитратов. Важную роль железо играет в фотосинтезе растений, являясь незаменимым элементом в составе хлорофилла (Небольсин, Небольсина, 2010).

По данным В. К. Пестрякова (1977), валовое содержание Fe в верхних горизонтах почв колеблется от 0.7 до 5% и более от массы почвы. Экспериментально установлено, что оптимальным уровнем содержания легкоподвижного Fe для яровой пшеницы в почвах является концентрация, равная 3.1 мг·кг⁻¹ почвы.

Данные об изменении содержания лег-коподвижного Fe под действием возрастающих доз мелиорантов представлены в табл. 3. Минимальное содержание Fe во всех вариантах опыта было установлено в год применения мелиорантов. Концентрация Fe в год применения доломитовой муки варьировалась от 0.21 до 0.03 мг·кг $^{-1}$.

 Таблица 3. Влияние разных доз доломитовой муки и доменного шлака на содержание железа и марганца

	Fe, мг/кг				Mn, моль(экв)/100 г			
Вариант опыта	Пшеница	Рапс	Рапс	Вика	Пшеница	Рапс	Рапс	Вика
1. Фон NPK	0.21	0.39	0.72	0.35	0.11	0.13	0.16	0.12
2. Фон + ДМ по 0.375 Нг	0.10	0.32	0.59	0.35	0.05	0.09	0.10	0.13
3. Фон + ДМ по 0.75 Нг	0.05	0.29	0.52	0.27	0.03	0.07	0.09	0.11
4. Фон + ДМ по 1 Нг	0.03	0.20	0.42	0.29	0.02	0.05	0.07	0.09
5. Фон + ДШ по 0.1 Нг	0.18	0.40	0.63	0.47	0.10	0.11	0.11	0.32
6. Фон + ДШ по 0.25 Нг	0.18	0.29	0.59	0.48	0.08	0.08	0.11	0.13
7. Фон + ДШ по 0.375 Нг	0.14	0.38	0.61	0.62	0.08	0.10	0.09	0.14
8. Фон + ДШ по 0.75 Нг	0.13	0.31	0.58	0.40	0.06	0.07	0.09	0.13
9. Фон + ДШ по 1 Нг	0.12	0.25	0.50	0.51	0.04	0.06	0.08	0.10
HCP05	0.024	0.048	0.070	0.07	0.013	0.012	0.014	0.015

ДМ – доломитовая мука, ДШ – доменный шлак, НСР – наименьшая существенная разница.

Осаждение Fe при использовании доломитовой муки протекало более интенсивно, чем при применении доменного шлака. На второй и третий годы проведения эксперимента концентрация Fe увеличивалась вне зависимости от дозы и формы мелиоранта. На четвёртый год после известкования содержание Fe снижалось. Исключение составляют варианты с использованием доменного шлака в дозах 0.375 и 1Hг. В указанных вариантах установлен дальнейший рост концентрации железа. Вероятно, это связано с дополнительным вносом железа в почвы при использовании доменного шлака в отмеченных дозах. В целом, за 4 года эксперимента влияние доломитовой муки на кислотноосновные свойства почв и содержание легкоподвижных соединений Мп и Fe в почве сосудов опыта было более существенно, чем при использовании доменного шлака.

Данных о продолжительности воздействия шлаков на почвы и растения не слишком много. В опытах Н. А. Зеленова с соавт. (2010) продолжительность воздействия полной по Нг кислотности дозы металлургического шлака составила 34 года. Экспериментальные данные свидетельствуют о том, что воздействие металлургического шлака на кислотность почвы было слабее, чем воздействие известняковой и доломитовой муки.

Продуктивность же сельскохозяйственных культур при использовании шлака была выше.

В опытах А. Н. Небольсина и 3. П. Небольсиной (2005) было проведено изучение мелиоративных свойств мелкоразмолотого и гранулированного доменного шлака. Установлено, что даже спустя 39 лет после применения мелкоразмолотый доменный шлак продолжал оказывать положительное воздействие на почву. Наибольшее снижение величины pH_{KCI} при использовании гранулированного шлака наблюдалось на 7–9 годы после применения.

Во все годы изучения действие гранулированного шлака было очень слабым и даже спустя 39 лет после его применения в почве находили зёрна непрореагировавшего мелиоранта. Вероятно, растения способны поглощать Са и Мg из локальных очагов нейтрализованной почвы, прилегающих к крупным частицам известкового материала.

Основываясь на данных экспериментов А. Н. Небольсина и З. П. Небольсиной (2005), Н. А. Зеленова с соавт. (2010), в описанном опыте следует ожидать длительного последействия доменного шлака. При этом тонкий размол (< 0.25 мм) является обязательным условием эффективного применения доменного шлака.

Данные о влиянии известкования на урожайность растений пшеницы приведены в табл. 4. Минимальный выход соломы растений характерен для контрольного варианта. Устранение почвенной кислотности и связанной с ней фитотоксичности Al, Mn и Fe способствовало увеличению выхода соломы растений. В вариантах, удобренных доломитовой мукой в дозах 0.375—1Hг, урожайность соломы была в 2.3—2.5 раза выше, чем в контроле. Применение доменного шлака в эквивалентных дозах с доломитовой мукой было не менее эффективно.

Таблица 4. Влияние возрастающих доз доломитовой муки и доменного шлака на урожайность зерна и соломы пшеницы (г на сосуд).

Вариант опыта	Зерно	Солома
1. Фон NPK	2.2	4.7
2. Фон + ДМ по 0.375 Нг	9.7	10.8
3. Фон + ДМ по 0.75 Нг	11.9	11.4
4. Фон + ДМ по 1 Нг	12.5	11.6
5. Фон + ДШ по 0.1 Нг	6.0	7.3
6. Фон + ДШ по 0.25 Нг	8.8	8.7
7. Фон + ДШ по 0.375 Нг	8.4	10.0
8. Фон + ДШ по 0.75 Нг	9.2	11.8
9. Фон + ДШ по 1 Нг	9.4	12.7
HCP05	2.69	1.60

ДМ – доломитовая мука, ДШ – доменный шлак, НСР – наименьшая существенная разница.

Влияние известкования доломитовой мукой на выход зерна растений оказалось более значимо, чем влияние доменного шлака. В сосудах, где использовалась доломитовая мука в дозах, соответствующих 0.75 и 1Нг, прибавки урожая зерна были достоверно выше, чем в аналогичных вариантах со шлаком. По всей вероятности, это связано с наличием в составе доломитовой муки магния. Физиологическая роль магния для растений определяется его участием в фотосинтезе и деятельности ферментов. Аккумуляция магния происходит преимущественно в

генеративных органах (Небольсин, Небольсина, 2010).

Напротив, на 2, 3 и 4-й годы наблюдений, по мере растворения мелиорантов различий между доломитовой мукой и доменным шлаком по влиянию на рапс и вику выявить не удалось (табл. 5). Важно при этом подчеркнуть, что рапс и вика относятся к представителям семейства капустных и бобовых, характеризующихся высоким потреблением кальция. Вынос СаО с гектара у рапса составляет 300–500 кг, у вики – 120–150 кг (Небольсин, Небольсина, 2005).

Таблица 5. Влияние возрастающих доз доломитовой муки и доменного шлака на урожайность рапса и вики, г на сосуд.

	Pa	пс	Вика	Суммарный выход	% к контролю	
Вариант опыта	1-й срок	2-й срок	2012 г.	вегетативной массы		
1. Фон NPK	5.1	7.0	5.1	17.2	_	
2. Фон + ДМ по 0.375 Нг	9.3	8.7	6.3	24.3	141	
3. Фон + ДМ по 0.75 Нг	10.3	7.2	7.2	24.7	144	
4. Фон + ДМ по 1 Нг	12.8	10.4	6.3	29.5	172	
5. Фон + ДШ по 0.1 Нг	8.2	7.2	4.5	19.9	116	
6. Фон + ДШ по 0.25 Нг	10.1	8.4	5.8	24.3	141	
7. Фон + ДШ по 0.375 Нг	10.3	9.5	5.1	24.9	145	
8. Фон + ДШ по 0.75 Нг	10.6	7.0	6.5	24.1	140	
9. Фон + ДШ по 1 Нг	9.5	8.0	7.0	24.5	142	
HCP05	1.21	1.48	2.02	_	_	

ДМ – доломитовая мука, ДШ – доменный шлак, НСР – наименьшая существенная разница.

В большинстве известкованных вариантов прибавки урожая за три срока наблюдений колебались в зависимости от варианта опыта от 140 до 145% к контролю. Исключение составляет вариант, где доменный шлак был внесён в минимальной дозе — 0.1Нг (112% к контролю). Максимальная прибавка урожая зелёной массы рапса и вики была

характерна для почвы, произвесткованной доломитовой мукой по полной дозе Нг.

В целом, различия между мелиорантами по влиянию на химические свойства почвы были более значимыми, чем по воздействию на продуктивность растений. По удобрительной ценности мелкоразмолотый шлак мало уступает доломитовой муке.

Лишь в варианте с использованием карбонатной формы мелиоранта по 1Нг её эффективность за 4 года эксперимента превосходила эффективность доменного шлака. Следует ожидать длительного последействия шлака.

выводы

- 1. Использование доломитовой муки и доменного шлака привело к возрастанию величины р $H_{\rm KCl}$ исследуемой почвы. Чем выше была доза применения мелиорантов, тем больший сдвиг рH почвы был достигнут в опыте. Карбонатная форма мелиорантов способствовала большему сдвигу рH, чем их силикатная форма.
- 2. Использование обоих мелиорантов способствовало обогащению почвы катионами кальция и магния. Чем выше была доза применения, тем больше данных катионов накапливалось в почве. Почва, удобренная доломитовой мукой, характеризовалась большим содержанием обменных оснований, чем почва, удобренная доменным шлаком.
- 3. Влияние доломитовой муки на содержание алюминия, марганца и железа было более эффективным, чем воздействие доменного шлака. При использовании доломитовой муки в дозах, равных по нейтрализующей способности шлаку, было достигну-

- то более полное осаждение алюминия, марганца и железа.
- 4. Известкование привело к росту продуктивности растений. В вариантах, удобренных доломитовой мукой, урожайность соломы пшеницы была в 2.3–2.5 раза выше, чем в контроле. Варианты с доменным шлаком по продуктивности соломы пшеницы не уступали вариантам с доломитовой мукой. Влияние известкования доломитовой мукой на выход зерна было более существенным, чем влияние доменного шлака.
- 5. Урожайность вегетативной массы рапса и вики при внесении мелиорантов колебалась от 140 до 145% к контролю в зависимости от варианта опыта. Достоверных различий в продуктивности между вариантами, удобренными средними дозами доменного шлака и доломитовой муки, выявлено не было. При использовании высоких доз доломитовая мука превосходила доменный шлак по эффективности за 4 года эксперимента.
- 6. Различия между влиянием доменного шлака и доломитовой муки на химические свойства почвы были более значимыми, чем различия в их влиянии на продуктивность растений.

СПИСОК ЛИТЕРАТУРЫ

Деградация и охрана почв. 2002. М.: Изд. МГУ. 652 с.

Зеленов Н. А., Шильников И. А., Аканова Н. И., Швырков Д. А. 2010. Резерв химических мелиорантов и их агроэкологическая эффективность. В кн.: Современные проблемы и перспективы известкования кислых почв. Санкт-Петербург. С. 30–34.

Литвинович А. В., Небольсина З. П. 2012. Продолжительность действия известковых мелиорантов в почвах и эффективность известкования. Обзор. Агрохимия. 10: 79–94.

Небольсин А. Н., Небольсина З. П. 2005. Теоретические основы известкования почв. Санкт-Петербург. 252 с.

Небольсин А. Н., Небольсина З. П. 2010. Известкование почв, Санкт-Петербург. 254 с.

Орлов Д.С. 1985. Химия почв. Изд. МГУ. 1985. 376 с.

Пестряков В. К. 1977. Окультуривание почв Северо-Запада Нечерноземной зоны России. М.: Колос. 347 с.